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Emergent spatial correlations in stochastically evolving populations

Marek Grabowski and R. E. Camley
Department of Physics, University of Colorado, Colorado Springs, Colorado 80933-7150

~Received 5 May 1997!

We study the spatial pattern formation and emerging long-range correlations in a model of three species
coevolving in space and time according to stochastic contact rules. Analytical results for the pair correlation
functions, based on a truncation approximation and supported by computer simulations, reveal emergent
strategies of survival for minority agents based onselection of patterns.Minority agents exhibitdefensive
clusteringandcooperative behaviorclose to phase transitions.@S1063-651X~97!06909-2#

PACS number~s!: 87.10.1e, 02.50.2r, 64.60.Cn, 89.60.1x
in

e
o

i-
o

oc

in
sl
a
itly

m
i-
lt

ns
al
ga

t

air
fo
be
f

a
he
a
e
no
s
ca

h
m
e
a
e

st
if
t

s
n

st
i.e.,

x-
ied

the
in-

ol-
by
or-

on-
and

nd
nal
the

-

ince
-
ss-
re

s
t

The dynamics and spatial pattern formation of interact
species have been studied recently in various contexts@1,2#
using both deterministic and stochastic modeling techniqu
Particular emphasis in these studies was placed on temp
evolution of global quantities@3# such as population dens
ties. In contrast, much less is known about the evolution
multispecies systems in space, especially when the l
rules are probabilistic rather than deterministic~cellular au-
tomata@4#!. There has been a growing recognition@5#, how-
ever, that the environment has a spatial dimension, s
individual population members rarely mix homogeneou
over the territory available to them but develop inste
within separate subregions. It is in this context that explic
spatial stochastic versions of the classical models@6,7# have
received renewed attention@3,8,9#.

Specifically, spatial patterns in chemical reaction syste
were investigated@8,9# in the mean-field and pair approx
mations and contrasted with stochastic simulation resu
Active stationary states of oscillating populations@3# were
observed@9# and correlated with emerging spatial patter
for a very simple ‘‘paper, scissors, stone’’ model where
species are treated symmetrically. In contrast, we investi
a more general model that breaks the symmetry between
species and results in a much richer spatial behavior.

Our analytical results for the inter- and intraspecies p
correlation functions, supported by computer simulations
long-range correlations, show different and interesting
haviors that can be interpreted as strategies of survival
minority agents based onselection of patterns.The surviving
~stationary! patterns show complex spatial organization th
looks similar to what might be expected to emerge if t
species were trying to maximize their chances for surviv
Although such stationary states are to be expected as m
of self-organization of an interacting system, they should
be confused with global equilibrium states. In fact, the
states are manifestations of spatial nonequilibrium criti
phenomena@10#.

We consider a model of a disease spreading throug
spatially correlated three-species population evolving in ti
according to stochastic rules. The population memb
~agents! occupy the sites of a discrete, two-dimension
square lattice with the neighborhood of a given site defin
in the von Neumann sense~i.e., each site has four neare
neighbors!. Thus each site of the lattice can be in three d
ferent states: empty~0!, occupied by one healthy agen
561063-651X/97/56~3!/3421~5!/$10.00
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(X), or occupied by one infected agent (Y). The time evo-
lution of this system is cyclic~irreversible! and analogous to
that occurring in contact process models@2,10# or in lattice-
gas models@3# describing position-fixed chemical reaction
@8#. The local transition rules are the following. A give
empty site becomes occupied by a healthy agent, i.e., 0→X,
at a rate1

4 aNX , whereNX is the number of healthy neare
neighbors of that site. A healthy agent becomes infected,
X→Y, at a rate1

4 bNY , whereNY is the number of infected
nearest neighbors, while an infected agent dies, i.e.,Y→0, at
a rated independent of its neighborhood. This last rule e
plicitly breaks the symmetry of a basic cyclic system stud
previously@9#.

Furthermore, depending on a particular application of
model, the three agents can bear different names. For
stance, in the context of epidemiology our generic termin
ogy for the trio healthy, infected, and dead is substituted
the trio susceptible, infectious, and recovered in direct c
respondence with the classical Kermack-McKendrick@7#
model. On the other hand, in the mathematical ecology c
text, the three agents are referred to as prey, predator,
empty to mimic the classical Lotka-Volterra@6# system.

According to the just described rules of evolution a
assuming homogeneity and isotropy of the configuratio
space, the probability equations for the rate of change of
densityra of speciesa50, X, Y are

ṙX5aP0X2bPXY , ṙY5bPXY2drY , ~1!

wherePab5Pba are the joint probability densities for find
ing a speciesa at a given site and a speciesb at a nearest
neighbor of that site,ṙa[(d/dt)ra . Since(ara51, only
two of the species densities are independent. Similarly, s
(bPab5ra , only three out of nine equations for joint prob
abilities are independent. We choose to work with cro
species probabilities whose rates of change equations a

Ṗ0X5dPXY2 1
4 aP0X1 3

4 @a~T0X
0 2TXX

0 !2bTY0
X #,

ṖXY52~d1 1
4 b!PXY1 3

4 @b~TXY
X 2TYY

X !1aTXY
0 #, ~2!

ṖY05d~rY2PXY22PY0!1 3
4 ~bTY0

X 2aTXY
0 !,

whereTag
b denotes the joint probability of finding a specie

b at a given site and speciesa and g on the two neares
3421 © 1997 The American Physical Society
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3422 56MAREK GRABOWSKI AND R. E. CAMLEY
neighbors of that site. Subsequently, the time evolution
three-site cluster probabilities can be expressed in term
four-site cluster probabilities, thus forming the beginning
an infinite hierarchy of coupled equations. These will not
presented here, however, since we shall shortly introduc
truncation scheme cutting the hierarchy at the level of E
~2!.

First, let us make further simplifying assumptions. Wit
out much loss in generality we measure the time in units
maximal event ratea1b1d51 and we take the rates o
infection and recovery to be equala5b5 1

2 (12d), a choice
corresponding to a diagonal cut through the parameter sp
Furthermore, we shall concentrate on the study of active
tionary states with nonzero population of all three spec
@3#, i.e., the death rate range 0,d,dc . Subsequently, the
fixed stationary points of Eqs.~1! are given by

P0X5PXY5rdrY , rd5
2d

12d
. ~3!

Now, even the mean-field approximation, i.e.,Pab'rarb ,
yields three distinct stationary states: two homogeneous
sorbing states, one being the all-empty lattice ford50 and
the other the all healthy population state ford.dc5 1

3 , and
an active endemic state with nonzero population of all th
species:rX5rd andrY5r05(12rd)/2 for 0,d,dc .

To improve on the mean-field results we define the p
approximation@11,12# via

Tag
b 'PabPbg /rb . ~4!

With the above approximation, the fixed point conditions
pair densities of Eqs.~2! reduce to nonlinear algebraic equ
tions for three unknowns: the cross-species pair probabil
PXY andPY0 and the healthy species densityrX . However,
for our purpose, it is more convenient to work with cond
tional probabilities defined as

Ca/b[Pab /rb , ~5!

whereCa/b is the probability of a nearest neighbor to a s
in a stateb to be in a statea. In terms of these conditiona
probabilities, the stationarity conditions of Eqs.~3! are ex-
pressed as

CX/Y5rd , C0/X5CY/X , C0/Y5rdCY/0CX/0
21. ~6!

The remaining three cross-species probabilities can be ca
lated from the stationarity requirements of Eqs.~2!:

CY/X@CY/01CY/X12CX/02
2
3 ~2rd11!#50,

CY/X@CY/023CY/X2 2
3 ~2rd21!#50, ~7!

CX/0@CY/X2CY/02
4
3 ~rd21!#2 8

3 rdCY/050.

There are two classes of solutions to Eqs.~7!: the absorb-
ing all-X state and the active state with nonzero aver
population of all three species. Indeed, since the species
sities ratios can be written as
f
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then with the help of relations Eqs.~6! the species densitie
are calculated as

rX5rdCX/0r̄,

rY5CY/XCX/0r̄,
~8!

r05rdCY/Xr̄,

r̄5@rdC
X/0

1~rd1CX/0!CY/X#21.

Clearly, theCY/X50 solution of Eqs.~7! yields rY5r050
andrX51, corresponding to the absorbing state. Moreov
the active state solutions of Eqs.~7! are given by

CY/X5 1
3 $21rd2A114rd19rd

2%,

CY/05
2
3 ~2rd21!13CY/X , ~9!

CX/05
2
3 22CY/X .

Since CY/X of Eq. ~9! vanishes forrd>A3/8, i.e., for d
>dc'0.234, the phase transition from the active to the
healthy state takes place earlier than predicted by the m
field approximation wheredc5 1

3 . However, the extinction of
the healthy species still occurs only ford50. The pair ap-
proximation results for all three species densities, Eqs.~8!
with Eqs.~9!, in the active region are plotted in Fig. 1 wit
solid lines. We note that for low values of the death rate
infected agents density is suppressed, while the empty
density is enhanced compared to mean-field results.

While the mere existence of the two phase transitions
not surprising in itself~the pair approximation prediction
are not qualitatively different from those of the mean field!,

FIG. 1. Active state species densitiesra , a5X,Y,0, according
to the pair approximation~solid lines! and corresponding numerica
simulation results~open symbols!.
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56 3423EMERGENT SPATIAL CORRELATIONS IN . . .
the spatial correlation functions calculated in the pair
proximation ~9! offer important clues about the nature
these transitions. In particular, the limits

lim
d→0

CX/X5 1
3 ,

~10!

lim
d→dc

HCY/Y

C0/0
J 5H 1

4

12A 2
3
J

reveal strong same-species clustering effects in the lim
where the corresponding agents are in minority. Moreov
the nonzero limits

lim
d→dc

HCY/0

C0/Y
J 5H A2

3 2 2
3

3
4 ~12A 2

3 !
J ~11!

are indicative of ‘‘cooperative’’ correlations among agen
that are simultaneously on the verge of extinction near
upper phase transition. Thus the pair approximation res
already suggest a ‘‘defensive’’ spatial organization of t
minority species near their respective extinction limits. No
that, as expected, the mean-field limits of Eqs.~10! and~11!
are all equal to zero.

To emphasize the spatial nature of the inter- and intras
cies correlations it is illustrative to define the correlati
strength as

I a/b[ra2Ca/b , ~12!

which measures the deviation of the nearest-neighbor
correlations from that expected for a random distributio
The pair approximation results of Eqs.~8! and ~9! for these
correlation strengths~interactions! are displayed in Fig. 2 for
the central site of the healthy type and in Fig. 3 for t
central site in the infected state. The remaining three co

FIG. 2. Pair-correlation function of the healthy speciesI a/X ,
a5X,Y,0, according to the pair approximation~solid lines! and
corresponding numerical simulation results~open symbols!.
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lation functions with the central site being empty are n
shown since these are nearly identical to those of Fig
With the above definition~12!, the positive value ofI a/b
signifies a repulsive interaction, while negative values cor
spond to attraction.

Consequently, all three same-species interactions are
tractive in the entire range of the active state, while the cro
species interactions are repulsive except for the infec
dead correlations, which change sign ford'0.1 ~middle of
the range of the active state!. This change of sign is to be
expected if one interprets the mutual interspecie correlati
as emergent ‘‘strategies for survival’’ of the minority agen
At low death rate values the healthy agents are in minor
The highest ‘‘survivability’’ patterns for healthy species a
then those that tend to minimize the length of the cont
boundary with the ‘‘invading’’ infected species: health
agents cluster together, attracting each other and repe
the rest. The infected agents tend to surround healthy c
ters, repelling the dead in the process. For high death ra
the infected and dead agents both are in minority and t
tend to ‘‘cooperate’’ in their spatial organization, acting as
single species~attractive infected-dead interaction! in de-
fense against healthy invaders. The resultant clustering o
minority agents in this range of the death rate is expecte
be weaker, however, since the ‘‘cooperating’’ species h
distinct ‘‘goals.’’ To increase in numbers, the infected age
need to maximize contacts with the healthy majority, wh
the dead need to minimize their contacts with the heal
agents. The ensuing compromise weakens the cluste
strategy.

We test the accuracy of the pair approximation~4! by
performing computer simulations on a 1003100 lattice. Both
periodic and fixed-end boundary conditions were employ
and our results are not particularly sensitive to the choice
boundary conditions. We take one time step to correspon
104 updates of individual sites, i.e., approximately one u

FIG. 3. Pair-correlation function of the infected speciesI a/Y ,
a5X,Y,0, according to the pair approximation~solid lines! and
corresponding numerical simulation results~open symbols!.
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3424 56MAREK GRABOWSKI AND R. E. CAMLEY
date per site. Spatial correlations are found by averaging o
time. The system was started in a variety of initial config
rations and all averaging takes place after the first 500 t
steps~minimum! so as to exclude initial fluctuations. Th
total numbers of time steps included in the average ran
from 4000 to 12 000. In fact, the pair-correlation functio
are found to be reasonably accurate in just 1000 steps.
long-range correlations, to be discussed later, become
nificantly less noisy when averaging over 12 000 steps,
though the basic trends are well established after just 4
steps.

The results of the above simulations are displayed in F
1–3, in direct comparison with the pair approximatio
showing excellent qualitative agreement. Quantitative
however, the pair approximation consistently underestima
the strength of correlations close to both lower and up
phase transitions, suggesting the emergence of long-ra
correlations. Furthermore, the critical values of the death
shift according to the simulations:dc'0.18, while the ex-
tinction transition occurs at a nonzero value 0,d'0.025.
However, the latter critical value shows a sensitive dep
dence on the lattice size, decreasing with increasing size@3#.
More studies are needed to determine whether in the lim
infinite system size the extinction of the healthy species h
pens only at vanishing death rate as in both pair and me
field approximations.

To test the conjecture of emergent long-range interacti
beyond the pair approximation, we have performed furt
simulations. The long-range spatial correlations between
cies are again measured with respect to a random distribu
and are defined as

I a/b~n!5ra2Ca/b~n!, ~13!

whereCa/b(n) denotes conditional probability of a site di
tancen away from a chosen site to be in a statea, subject to
the chosen site being in a stateb. Thus the nearest-neighbo
pair correlationI a/b[I a/b(1). Thenumerical simulation re-
sults for the three most interesting correlation functions
displayed in Fig. 4 for four characteristic values of the de
rate.

In general, we see that the correlation strength extend
a substantial number of sites for death rates close to
lower phase transition, i.e.,d→0. As d is increased, the
range of interactions is significantly reduced. Specifica
the same-species interaction (X/X) is attractive at low-d val-
ues up to a distance of 20 sites. Similarly, for lowd, the
dead-infected (0/Y) interaction is strongly long-range repu
sive. For large death rates~close to upper phase transition!,
the 0/Y interaction becomes weakly attractive, consist
with the predictions of the pair approximation calculatio
for the cooperating minority species.

Of particular interest in Fig. 4 is the infected-dead (Y/X)
correlation, which clearly shows attractive cross-species
teractions 5–10 sites away from the central site, despite
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fact that the nearest-neighbor correlation is repulsive. T
attractive correlation at longer distances can be quite sig
cant. Ford50.025, the strength of this attractive interactio
at n56 is about 50% of the repulsive nearest-neighbor c
relation. Therefore, the combined effect of all the inter- a
intraspecies correlations is to preferentially select the high
survivability patterns. Ford→0, these patterns typically in
clude clusters of speciesX ~healthy or prey!, which are sur-
rounded by a region with a surplus of speciesY ~infected or
predators!, while the 0 species~dead or empty! are pushed
farther away from the central clusters. We have observed
prevalence of such patterns in real-time computer simu
tions.

This global picture of pattern selection is reminiscent
defensive strategies typically associated with learned or
stinctual behavior of minority~or weaker! species. For in-
stance, in the context of the predator-prey model, prey
semble in clusters for protection, while predators surrou
their prey and avoid empty space. It is interesting to not
that these complex strategies emerge in our model, des
the model being built on simple contact interactions only

The authors acknowledge support from the Glob
Change and Environmental Quality Program of the Univ
sity of Colorado and ARO Grant No. DAAH04-94-G-0253

FIG. 4. Numerical simulation results for the interaction streng
I a/b(n) for somea,b5X,Y,0 as a function of site indexn. Corre-
sponding values of the death rated are indicated in the panels.
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